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ABSTRACT

Mahalanobis distance (MD) is a widely used multivariate technique for
measuring dispersion. Rousseuw and Leroy (1987) advocated using MD
as a measure of high leverage points in linear regression. Since MD’s are
non-robust in the presence of high leverage points they suggested using
robust version of Mahalanobis distance. They also proposed a cut-off
point for MD’s which follows a square root of Chi-square distribution
with the degrees of freedom equals to the dimension of the explanatory
variables. But we see a major problem in it. In regression we do not as-
sume normality assumption for the explanatory variables, sometimes the
explanatory variables may be indicator or categorical variables. More-
over, the explanatory variables are treated as fixed variables hence a
chi-square cut-off point is not appropriate. In this paper we propose a
nonparametric cut-off point for the robust Mahalanobis distance. This
cut-off point does not require any distributional assumption of the ex-
planatory variables. We employ this method to several well-known data
sets and observed that the proposed method performs much better than
the existing methods.

Keywords: Leverage, Mahalanobis distance, MVE, Swamping.



Imon, A. H. M. R. and Apu, M. R.

1. Introduction

Leverage values are being used in regression diagnostics as measures of
influential observations in the X-space. Detection of high leverage observations
or points is crucial due to their responsibility for masking outliers. Let us
consider a k variable regression model

Y = Xβ + ε (1)

The least squares residual vector can be expressed in terms of the true distur-
bance vector as

ε̂ = Y − Ŷ = (I −W )Y = (I −W )ε (2)

where the matrix
W = X(XTX)−1XT (3)

is generally known as weight matrix or leverage matrix. Observations corre-
sponding to excessively large ε values are termed as outliers and the values of
X which stand far away from the centre of the data are called high leverage
points. According to Hocking and Pendleton (1983), "high leverage points are
those for which the input vector xi, in some sense, far from the rest of the
data." The i -th diagonal element, wii of the weight matrix W is traditionally
used as a measure of leverage of the response value yi on the corresponding
value ŷi since the weight matrix W reflects joint effect of k regressors on the
fitted responses. The average value of wii is k/n, where k is the number of the
regressors (including the intercept term) and n is the total number of obser-
vations. Data points having large wii values are generally considered as high
leverage points. Hoaglin and Welsch (1978) considered observations unusual
when wii exceeded 2k/n which is also known as twice-the-mean-rule. Vellman
and Welsch (1981) consider wii as large when it exceeds 3k/n which is known
as thrice-the-mean-rule. For a definition of when wii is large, Huber (1981) sug-
gested breaking the range of possible values, (0 ≤ wii ≤ 1) into three intervals.
Values wii ≤ 0.2 appear to be safe, values between 0.2 and 0.5 are risky, and
values above 0.5 should be avoided. All these cut-off points are rules of thumb
and they have been proposed in the literature in this way mainly because of the
fact that the explanatory variables are held fixed in the least squares approach.

Well known Mahalanobis distances are also suggested to use as measures of
leverages in the literature. For the mean vector X̄ and the variance covariance
matrix S, Mahalanobis (1936) defined a multivariate dispersion matrix

M =
√

(X − X̄)S−1(X − X̄)T (4)
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The diagonal elements of the M matrix as defined in (4) are known as Maha-
lanobis distances. Here we define the ith Mahalanobis distance

di =
√
aii (5)

where
√
aii is the ith diagonal element of M . Mahalanobis (1936) also showed

under normality
M2 = (X − X̄)S−1(X − X̄)T ∼ χ2

p (6)

In a linear regression problem if X is the set of explanatory variables a very
simple and common approach to consider observations to be points of high
leverage, if they possess large Mahalanobis distance. Rousseeuw and Leroy
(1987) show that

di =
√

(n− 1)(wii − 1/n) (7)

and thus Mahalanobis distance for each of the points has a one-one relationship
with wii. They also pointed out that Mahalanobis distance consists of mean
vector and variance covariance matrix both of them can be largely affected
by high leverage points and may break down easily. For this reason a robust
version of Mahalanobis distance is required. In section 2 we introduce the
robust Mahalanobis distance. In section 3 we introduce leverage measures
based on robust Mahalanobis distance (RMD). We believe that the existing cut-
off point for RMD based on chi-square distribution is logically incorrect and for
this reason we propose a new nonparametric cut-off point for the detection of
high leverage points. In section 4 we presented a couple of well-known examples
to show the advantage of using the proposed cut-off point.

2. Robust Mahalanobis Distance For the
Detection of High Leverage Points

Here we introduce a robust version of Mahalanobis distances based on ro-
bust estimators for mean vector and variance-covariance matrix. Let us define
a general form of Mahalanobis Squared Distance (MSD)

MD2
i = [xi − T (X)][C(X)]−1[xi − T (X)]T (8)

Rousseeuw (1984) suggested a method where T (X) is the center of the minimal
volume ellipsoid covering at least h points of X, where h can be taken equal to
(n/2) + 1. This is called the minimum volume ellipsoid (MVE) estimator. The
corresponding covariance estimator is given by the ellipsoid itself, multiplied
by a suitable factor to obtain consistency.

In most applications it is not feasible to consider all ’halves’ of data. We
start by drawing a sub sample of (p + 1) different observations, indexed by
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J = (i1, i2, ..., ip+1). For this sub sample we determine the arithmetic mean
and the corresponding covariance matrix, given by

X̄J =
1

p+ 1

∑
i∈J

xi, cJ =
1

p

∑
i∈J

(xi − x̄J)T (xi − x̄J) (9)

where cJ is non-singular. The corresponding ellipsoid should then be inflated
or deflated to contain exactly h points, which corresponds to computing

m2
J = med(xi − x̄J)c−1J (xi − x̄J)T (10)

The volume of the resulting ellipsoid, corresponding to m2
JCJ is proportional

to
[det(m2

JCJ)]1/2 = [det(CJ)]1/2(mJ)p (11)

We repeat it for many J so that the above determinant becomes the mini-
mum and its corresponding values yield T (X) = x̄J and C(X) = (χ2

p,0.5)−1m2
JCJ

where χ2
p,0.5 is the median of the chi-squared distribution with p degrees of free-

dom. This correction factor is used because we assume that the data follow a
multivariate normal distribution.

Another popular approach for finding robust estimates for mean vector and
the variance covariance matrix where T (X) is the mean of the h points of X
for which the determinant of the covariance matrix is minimal. We call this
method the minimum covariance determinants (MCD) suggested by Rousseeuw
(1984). The standard choice of h = [(n + p + 1)/2] for the MCD is proposed
by Van Alest and Rousseeuw (2009). Conceptually MVE is related with the
least median squares (LMS) and MCD is related with least trimmed of squares
(LTS) regression. They are computationally extensive, but fortunately both
the MVE and MCD are readily available in S-PLUS and R.

After obtaining the robust multivariate location and scale estimates given
by either MVE or MCD, we compute the robust Mahalanobis distance

Mdi =
√

[xi − T (X)][C(X)]−1[xi − T (X)]T (12)

Rousseeuw and Leroy (1987) suggested a cut-off point for Mdi as
√
χ2
p,0.5 at

the 5% level of significance.
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3. A New Cut-Off Point for the Robust
Mahalanobis Distance

When we use the ordinary least squares (OLS) method for fitting a re-
gression line, the resulting residuals are functions of leverages and true errors.
Thus high leverage points together with large errors (outliers) may pull the
fitted least squares line in a way that the fitted residuals corresponding to that
outliers might be too small and this may cause masking (false negative) of out-
liers. For the same reason the residuals corresponding to inliers may be too
large and this may cause swamping (false positive). Robust methods are proved
to be useful to identify the genuine high leverage points, but they have a general
tendency [see Cook and Hawkins (1990)] to declare innocent observations to
be unusual. This effect is known as swamping and Davies et al. (2004) showed
that swamping can severely affect the estimation of parameters. So we defi-
nitely want a high leverage detection method which is not affected by masking
or swamping. But the other issue is more crucial here. The cut-off value χ2

p,0.5

for the robust Mahalanobis distance as shown in (8) is logically grounded from
the assumption that the p-dimensional variables follow a multivariate normal
distribution. But in a regression problem it is a common assumption that the
explanatory variables are held as fixed and for this reason no probability distri-
bution is assumed for them. Mainly because of this fact the traditionally used
measures of leverages such as twice-the-mean rule, thrice-the-mean rule and
Huber’s rule as mentioned in section 2 yield thumb rules for cut-off points of
wii. No body even thought about the distributional properties of wii because
they are fixed as the X matrix is fixed. Hence assumption regarding the X ma-
trix to follow a multivariate normal distribution is logically incorrect and hence
the resulting Mahalanobis distance should not be associated with a chi-square
distribution. At this point the immediate question comes to our mind is what
should be an appropriate cut-off point for Mahalanobis distance in a regres-
sion problem. Here we propose a new cut-off point for Mahalanobis distances
and/or robust Mahalanobis distances. This cut-off point is purely empirical
in nature and it does not require any distributional assumption regarding the
distance values Mdi. For a set of Mdi values, we call an observation as a high
leverage point if it satisfies the condition

Mdi > Median(Mdi) + 3MAD(Mdi) (13)

where MAD(Mdi) is defined as

MAD(Mdi) = Median|Mdi −median(Mdi)|/0.6745 (14)

This nonparametric type cut-off point was first proposed by Hadi (1992) and
later used by Imon (2002) and many others.
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4. Examples

In this section we compare the performance of our proposed cut-off rule
with the existing rule. We have considered two well-known data sets Brown
(1980) data and Finney (1947) data.

4.1 Brown Data

We first consider a cancer data set given by Brown (1980). The original
objective of the author was to see whether an elevated level of acid phosphates
(A.P.) in the blood serum would be of value for predicting whether or not
prostate cancer patients also had lymph node involvement (L.N.I). The data
set additionally contains data on the four more commonly used regressors, but
we use here only two variables A.P. and the ’Age’ of the patients in illustrating
simple logistic regression with 53 cases. The observations from 53 patients are
given in Table 1.

Table 1: Brown cancer data

Index A.P Age Index A.P Age Index A.P Age Index A.P Age
1 48 66 15 47 67 29 50 64 43 81 50
2 56 68 16 49 51 30 40 63 44 76 60
3 50 66 17 50 56 31 55 52 45 70 45
4 52 56 18 78 60 32 59 66 46 78 56
5 50 58 19 83 52 33 48 58 47 70 46
6 49 60 20 98 56 34 51 57 48 67 67
7 46 65 21 52 67 35 49 65 49 82 63
8 62 60 22 75 63 36 48 65 50 67 57
9 56 50 23 99 59 37 63 59 51 72 51
10 55 49 24 187 64 38 102 61 52 89 64
11 62 61 25 136 61 39 76 53 53 126 68
12 71 58 26 82 56 40 95 67
13 65 51 27 40 64 41 66 53
14 67 67 28 50 61 42 84 65

This data set has been analyzed extensively by many authors [see Imon and
Hadi (2008, 2013)] and it has been reported that 3 observations (cases 22, 23
and 53) are genuine high leverage points in this data. The scatterplot as shown
in Figure 1 also supports their findings.

Now we compute robust Mahalanobis distance for this data set based on
MVE, MCD and the results with the existing and proposed cut-off points are
presented in Table 2. If we look at the MVE and MCD values we clearly see
that they are very different. MVE values are on average much higher than the
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Figure 1: Scatter plot of Age vs A.P. for Brown data

corresponding MCD values and the former one has much higher dispersion as
well since the average MVE and MCD are 3.868 and 2.061 respectively with
their respective standard deviations 4.488 and 2.005. But we are surprised to
see that the existing method uses the same cut-off points for both of these
two methods. Results presented in Table 2 clearly shows that how ineffective
is the existing method to identify the high leverage points. There are only 3
high leverage points in the data but the existing cut-off point based on MVE
identifies 29 observations out of 53 as high leverage points. It is simply absurd.
The performance of MCD is slightly better although it identifies 10 observations
as high leverage points. When we employ our proposed method it correctly
identifies the 3 observations and no more points are swamped in as high leverage
points.

Similar remarks may apply with Figure 2 where we present an index plot
of robust Mahalanobis distances with the existing and proposed cut-off points.
This figure shows that the proposed method can locate the three high leverage
points clearly but the existing methods identify more than half of the observa-
tions as high leverage points.

4.2 Finney Data

Next we consider another cancer data set given by Finney (1947). The
original data set were obtained to study the effect of the rate and volume of air
inspired on a transient vaso-constriction in the skin of the digits. The nature of
the measurement process was such that only the occurrence and nonoccurrence
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Table 2: Robust Mahalanobis distances for Brown data

Index Mahalanobis Distance Identified Cases Cut-off (2.447) Identifications based on Proposed Cut-off Points
MVE MCD MVE MCD MVE(8.3487) MCD(3.8347)

1 2.7145 1.2516 1 0 0 0
2 0.9804 1.4629 0 0 0 0
3 2.2810 1.1778 0 0 0 0
4 1.8474 0.9481 0 0 0 0
5 2.2810 0.9098 0 0 0 0
6 2.4977 0.8847 1 0 0 0
7 3.1480 1.2646 1 0 0 0
8 0.3202 0.4143 0 0 0 0
9 0.9804 1.6118 0 0 0 0
10 1.1971 1.8293 0 0 0 0
11 0.3202 0.5533 0 0 0 0
12 2.2711 1.1017 0 0 0 0
13 0.9705 1.2124 0 0 0 0
14 1.4041 1.8217 0 0 0 0
15 2.9313 1.4039 1 0 0 0
16 2.4977 1.8932 1 0 0 0
17 2.2810 1.1203 0 0 0 0
18 3.7885 1.9001 1 0 0 0
19 4.8723 2.1225 1 0 0 0
20 8.1238 3.5561 1 1 0 0
21 1.8474 1.2769 0 0 0 0
22 3.1382 1.9166 1 0 0 0
23 7.2346 3.8214 1 1 0 0
24 27.4161 12.5386 1 1 1 1
25 16.3610 7.4766 1 1 1 1
26 4.6556 2.0554 1 0 0 0
27 4.4486 1.6658 1 0 0 0
28 2.2810 0.7824 0 0 0 0
29 2.2810 0.9524 0 0 0 0
30 4.4486 1.6567 1 0 0 0
31 1.1971 1.3364 0 0 0 0
32 0.3301 1.2145 0 0 0 0
33 2.7145 1.0984 1 0 0 0
34 2.0642 0.9156 0 0 0 0
35 2.4977 1.1008 1 0 0 0
36 2.7145 1.1502 1 0 0 0
37 0.5370 0.4010 0 0 0 0
38 7.9909 3.7513 1 1 0 0
39 3.3550 1.5339 1 0 0 0
40 7.4735 3.7647 1 1 0 0
41 1.1873 0.9464 0 0 0 0
42 5.0891 2.9502 1 1 0 0
43 4.4388 2.0436 1 0 0 0
44 3.3550 1.7111 1 0 0 0
45 2.0544 2.1464 0 0 0 0
46 3.7885 1.6858 1 0 0 0
47 2.0544 1.9976 0 0 0 0
48 1.4041 1.8217 0 0 0 0
49 4.6556 2.5524 1 1 0 0
50 1.4041 0.7067 0 0 0 0
51 2.4879 1.4139 1 0 0 0
52 6.1729 3.2989 1 1 0 0
53 14.1933 7.1220 1 1 1 1
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Figure 2: Index plot of robust Mahalanobis distances for Brown data

of vaso-constriction could be reliably measured and this data is presented in
Table 3.

Table 3: Finney Cancer Data

Index Volume Rate Index Volume Rate Index Volume Rate
1 3.70 0.825 14 1.40 2.330 27 1.80 1.500
2 3.50 1.090 15 0.75 3.750 28 0.95 1.900
3 1.25 2.500 16 2.30 1.640 29 1.90 0.950
4 0.75 1.500 17 3.20 1.600 30 1.60 0.400
5 0.80 3.200 18 0.85 1.415 31 2.70 0.750
6 0.70 3.500 19 1.70 1.060 32 2.35 0.030
7 0.60 0.750 20 1.80 1.800 33 1.10 1.830
8 1.10 1.700 21 0.40 2.000 34 1.10 2.200
9 0.90 0.750 22 0.95 1.360 35 1.20 2.000
10 0.90 0.450 23 1.35 1.350 36 0.80 3.330
11 0.80 0.570 24 1.50 1.360 37 0.95 1.900
12 0.55 2.750 25 1.60 1.780 38 0.75 1.900
13 0.60 3.000 26 0.60 1.500 39 1.30 1.625

Finney data set has also been extensively analyzed by many authors [see
Imon and Hadi (2009, 2013)] and it has been reported that 3 observations
(cases 1, 2 and 17) are genuine high leverage points. This kind of findings is
supported by Figure 3 as well.

When we compute robust Mahalanobis distances by the MVE method AND
the MCD as shown in Table 4, we observe that the existing cut-off point can
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Figure 3: Scatter plot of Rate vs Volume for Finney data

Figure 4: Index plot of robust Mahalanobis distances for Finney data

successfully identify the 3 genuine cases but at the same time both of them
swamp in 3 good cases (16, 31 and 32) as well. But the proposed method
correctly identifies the 3 observations without swamp in any good case.

We observe exactly same picture when we look at Figure 4 where we present
an index plot of robust Mahalanobis distances with the existing and proposed
cut-off points. This figure shows that the proposed method can locate the
three high leverage points clearly but the existing methods identify 3 more
observations as high leverage points.
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Table 4: Robust Mahalanobis distances based on MVE for Finney data

Index Mahalanobis Distance Identified Cases Cut-off (2.447) Identifications based on Proposed Cut-off Points
MVE MCD MVE MCD MVE(8.827) MCD(4.178)

1 5.73219 4.79209 1 1 1 1
2 5.32267 4.44493 1 1 1 1
3 1.00416 1.22161 0 0 0 0
4 1.01001 0.95435 0 0 0 0
5 1.63098 2.04027 0 0 0 0
6 1.99275 2.44218 0 0 0 0
7 2.00697 1.98295 0 0 0 0
8 0.14051 0.14630 0 0 0 0
9 1.52233 1.55587 0 0 0 0
10 1.87784 1.95751 0 0 0 0
11 1.87232 1.91859 0 0 0 0
12 1.43250 1.63277 0 0 0 0
13 1.55923 1.85866 0 0 0 0
14 1.06975 1.15026 0 0 0 0
15 2.26533 2.77222 0 0 0 0
16 2.70194 2.22844 1 1 0 0
17 4.76606 4.00749 1 1 1 1
18 0.87594 0.83690 0 0 0 0
19 1.39284 1.11870 0 0 0 0
20 1.60071 1.31336 0 0 0 0
21 1.57406 1.47117 0 0 0 0
22 0.74977 0.71942 0 0 0 0
23 0.66168 0.46962 0 0 0 0
24 0.90508 0.65193 0 0 0 0
25 1.13112 0.90583 0 0 0 0
26 1.33950 1.24734 0 0 0 0
27 1.52808 1.18909 0 0 0 0
28 0.34206 0.46677 0 0 0 0
29 1.80745 1.47418 0 0 0 0
30 1.75091 1.71090 0 0 0 0
31 3.50089 2.89976 1 1 0 0
32 3.01687 2.71063 1 1 0 0
33 0.02376 0.23051 0 0 0 0
34 0.47515 0.71276 0 0 0 0
35 0.36568 0.48214 0 0 0 0
36 1.77791 2.21215 0 0 0 0
37 0.34206 0.46677 0 0 0 0
38 0.79492 0.81042 0 0 0 0
39 0.43467 0.23288 0 0 0 0

5. Conclusion

In this paper our main objective was to propose a new cut-off point for
robust Mahalanobis distance to identify multiple high leverage points because
the existing cut-off point logically looks incorrect. Another drawback of the
existing method is that it often severely gets affected by swamping and identifies
too many cases unnecessarily. Our proposed method is based on nonparametric
approach and empirical in nature. So it does not require any table and is very
easy to compute. A couple of well-known data sets clearly show the advantage
of using the proposed cut-off point instead of the existing one. No matter
whether we compute robust Mahalanobis distances by the MVE or the MCD
when we employ the existing cut-off points for leverage measures it swamps a
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huge number of observations. But when we employ the proposed cut-off point
it successfully identifies all high leverage points and does not swamp even a
single observation.
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